MonoGS++: Fast and Accurate Monocular RGB Gaussian SLAM


Ren-Wu Li (AMD), Wenjing Ke (AMD), Dong Li (AMD), Lu Tian (AMD), Emad Barsoum (AMD)
The 35th British Machine Vision Conference

Abstract

We present MonoGS++, a novel fast and accurate Simultaneous Localization and Mapping (SLAM) method that leverages 3D Gaussian representations and operates solely on RGB inputs. While previous 3D Gaussian Splatting (GS)-based methods largely depended on depth sensors, our approach reduces the hardware dependency and only requires RGB input, leveraging online visual odometry (VO) to generate sparse point clouds in real-time. To reduce redundancy and enhance the quality of 3D scene reconstruction, we implemented a series of methodological enhancements in 3D Gaussian mapping. Firstly, we introduced dynamic 3D Gaussian insertion to avoid adding redundant Gaussians in previously well-reconstructed areas. Secondly, we introduced clarity-enhancing Gaussian densification module and planar regularization to handle texture-less areas and flat surfaces better. We achieved precise camera tracking results both on the synthetic Replica and real-world TUM-RGBD datasets, comparable to those of the state-of-the-art. Additionally, our method realized a significant 5.57x improvement in frames per second (fps) over the previous state-of-the-art, MonoGS.

Citation

@inproceedings{Li_2024_BMVC,
author    = {Ren-Wu Li and Wenjing Ke and Dong Li and Lu Tian and Emad Barsoum},
title     = {MonoGS++: Fast and Accurate Monocular RGB Gaussian SLAM},
booktitle = {35th British Machine Vision Conference 2024, {BMVC} 2024, Glasgow, UK, November 25-28, 2024},
publisher = {BMVA},
year      = {2024},
url       = {https://papers.bmvc2024.org/0133.pdf}
}


Copyright © 2024 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection