Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer


Sungmin Kang (Dongguk University), Jaeha Song (Dongguk University), Jihie Kim (Dongguk University)
The 35th British Machine Vision Conference

Abstract

Understanding the morphological structure of medical images and precisely segmenting the region of interest or abnormality is an important task that can assist in diagnosis. However, the unique properties of medical imaging make clear segmentation difficult, and the high cost and time-consuming task of labeling leads to a coarse-grained representation of ground truth. Facing with these problems, we propose a novel Diffusion Transformer Segmentation (DTS) model for robust segmentation in the presence of noise. We propose an alternative to the dominant Denoising U-Net encoder through experiments applying a transformer architecture, which captures global dependency through self-attention. Additionally, we propose k-neighbor label smoothing, reverse boundary attention, and self-supervised learning with morphology-driven learning to improve the ability to identify complex structures. Our model, which analyzes the morphological representation of images, shows better results than the previous models in various medical imaging modalities, including CT, MRI, and lesion images. Our code and dataset are publicly available at: https://github.com/ready2drop/DTS

Citation

@inproceedings{Kang_2024_BMVC,
author    = {Sungmin Kang and Jaeha Song and Jihie Kim},
title     = {Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer},
booktitle = {35th British Machine Vision Conference 2024, {BMVC} 2024, Glasgow, UK, November 25-28, 2024},
publisher = {BMVA},
year      = {2024},
url       = {https://papers.bmvc2024.org/0060.pdf}
}


Copyright © 2024 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection